固態金屬3D打印專家Fabrisonic利用其專利的超聲增材制造(UAM)工藝成功地將不同的非晶態合金融合到多金屬覆層中。作為NASA SBIR研究的一部分,該公司部署了超聲波能量而不是傳統的基于激光的3D打印方法來組合不同的耐腐蝕合金。利用其專有的制造技術,Fabrisonic能夠將金屬連接到晶體襯底上,而不會破壞其任何有益特性。
卡內基梅隆大學(CMU)的研究人員3D打印了一個傳感器,該傳感器可以在大約10秒內識別Covid-19抗體。該技術是使用增材制造系統供應商Optomec的專利氣溶膠噴射印刷(AJP)工藝生產的,可以使臨床醫生立即準確地檢測是否有人感染了冠狀病毒。
致力于光學鏡片3D打印的Luxexcel公司宣布已為智能眼鏡的下一步增長做好準備,通過鏡片專用3D打印設備、材料、軟件以及光學領域的專業知識,為智能眼鏡市場提供鏡片生產解決方案。
3D數字化及3D打印技術目前在口腔修復、定制化假肢、手術導板、植入物等領域得到了廣泛的應用。尤其在骨科這個細分醫療場景中,3D技術所扮演的角色也越來越重要,正慢慢融入骨科術前規劃、制作手術導航定位模板、定制個性化假體與內植物、定制外固定支具等醫療環節。
先進的復合材料公司Hexcel推出了一種用于3D打印的新型導電聚合物基碳纖維復合材料。該公司的新型熱塑性塑料HexPEKK EM是為滿足先進飛機應用中的靜電管理,電磁(EM)屏蔽和輻射吸收需求而定制的。通過將EM質量直接集成到3D打印的零件中,Hexcel的材料可以使用戶減少昂貴的后處理步驟,并從一開始就交付“可立即投入使用”的組件。
對于美國政府的某些廚師來說,條條大路通向3D打印。高超音速也是如此。 Astro America(有時也稱為AstroA)旨在利用新的制造技術來開發所謂的生產加速器設施(HPAF)。
萊斯大學的研究人員使用人工智能(AI)來加快3D打印生物支架的開發,以幫助傷口愈合。賴斯大學布朗工程學院的計算機科學家Lydia Kavraki領導的一個團隊使用了兩種機器學習方法來預測支架材料的質量(給定打印參數)。該研究發表在《組織工程》第A部分上,控制打印速度對于制造高質量的植入物至關重要。
微型3D打印系統專家Boston Micro Fabrication(BMF)推出了它所謂的“第一臺也是唯一的”用于短期工業生產的微型3D打印機microArch S240。該公司最新的打印機以BMF的專利投影微立體光刻技術(PμSL)為模型,采用了其他先進的材料,更大的打印體積和更快的打印速度。
太空制造技術的領導者Made In Space(MIS)將于9月29日向國際空間站(ISS)發送第一座陶瓷制造設施。渦輪陶瓷制造模塊(CMM)是諾斯羅普·格魯曼公司(Northrop Grumman)第十四次商業補給任務(NG-14)的一部分,它將是第一臺在軌操作的立體光刻(SLA)打印機。
美國國家標準技術研究院(NIST)的研究人員開發了一種3D打印凝膠和軟材料的新方法。該研究團隊沒有像大多數現代軟材料3D打印機那樣使用紫外激光(UV)或可見光來引發其凝膠,而是利用電子和X射線束來固化一系列光敏樹脂。事實證明,這些短波長的激光比常規光束更聚焦,并且能夠制造具有高水平結構細節的凝膠,尺寸小至100納米(nm)。NIST科學家最新開發的技術可以創建復雜的微觀結構,例如柔性電極,生物傳感器或軟微型機器人。